Pairs of Dual Wavelet Frames from Any Two Refinable Functions
نویسندگان
چکیده
Starting from any two compactly supported refinable functions in L2(R) with dilation factor d, we show that it is always possible to construct 2d wavelet functions with compact support such that they generate a pair of dual d-wavelet frames in L2(R). Moreover, the number of vanishing moments of each of these wavelet frames is equal to the approximation order of the dual MRA; this is the highest possible. In particular, when we consider symmetric refinable functions, the constructed dual wavelets are also symmetric or antisymmetric. As a consequence, for any compactly supported refinable function φ in L2(R), it is possible to construct, explicitly and easily, wavelets that are finite linear combinations of translates φ(d ·−k), and that generate a wavelet frame with an arbitrarily preassigned number of vanishing moments. We illustrate the general theory by examples of such pairs of dual wavelet frames derived from B-spline functions.
منابع مشابه
Compactly Supported Multivariate, Pairs of Dual Wavelet Frames Obtained by Convolution
In this paper, we present a construction of compactly supported multivariate pairs of dual wavelet frames. The approach is based on the convolution of two refinable distributions. We obtain smooth wavelets with any preassigned number of vanishing moments. Their underlying refinable function is fundamental. In the examples, we obtain symmetric wavelets with small support from optimal refinable f...
متن کاملDual Multiwavelet Frames with High Balancing Order and Compact Fast Frame Transform
An interesting method called Oblique Extension Principle (OEP) has been proposed in the literature for constructing compactly supported MRA tight and dual wavelet frames with high vanishing moments and high frame approximation orders. Many compactly supported MRA wavelet frames have been recently constructed from scalar refinable functions via OEP. Despite the great flexibility and popularity o...
متن کاملPairs of Frequency-based Nonhomogeneous Dual Wavelet Frames in the Distribution Space
In this paper, we study nonhomogeneous wavelet systems which have close relations to the fast wavelet transform and homogeneous wavelet systems. We introduce and characterize a pair of frequency-based nonhomogeneous dual wavelet frames in the distribution space; the proposed notion enables us to completely separate the perfect reconstruction property of a wavelet system from its stability prope...
متن کاملMultiwavelet Frames from Refinable Function Vectors
Starting from any two compactly supported d-refinable function vectors in ( L2(R) )r with multiplicity r and dilation factor d, we show that it is always possible to construct 2rd wavelet functions with compact support such that they generate a pair of dual d-wavelet frames in L2(R) and they achieve the best possible orders of vanishing moments. When all the components of the two real-valued d-...
متن کاملWavelet Bi-frames with few Generators from Multivariate Refinable Functions
Using results on syzygy modules over a multivariate polynomial ring, we are able to construct compactly supported wavelet bi-frames with few generators from almost any pair of compactly supported multivariate refinable functions. In our examples, we focus on wavelet bi-frames whose primal and dual wavelets are both derived from one box spline function. Our wavelet bi-frames have fewer generator...
متن کامل